Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The continuum theory-based models, which include solid stress models and gas-solid drag models, are required for the modeling of gas-solid flows in the framework of the Eulerian–Eulerian method. The interactions among particles are characterized by their diverse behaviors at different flow regimes, including kinetic motion, particle–particle collision and enduring friction. It is difficult to describe the particle behaviors at various regimes by mathematical methods accurately. Therefore, it is very important to develop proper solid stress models that can capture the inherent characteristics of the flow behaviors. In addition, the gas-solid fluidization system is a typical heterogeneous system, which exhibits locally inhomogeneous structures such as bubbles or particle clusters with different shapes and sizes. Due to these inhomogeneous characteristics, the gas-solid drag model has become one of the key challenges in the simulation of gas-solid flows. Various forms of constitutive relations for solid stress models and gas-solid drag models have been reported in the literature. In this paper, we reviewed the solid stress models crossing various flow regimes and drag models in both micro- and mesoscales, which provide a useful reference for model selection in simulating gas-solid flows.

Details

Title
A Review of the Continuum Theory-Based Stress and Drag Models in Gas-Solid Flows
Author
Zhao, Junnan 1   VIAFID ORCID Logo  ; Guo, Xinyao 1 ; Liu, Guodong 1 ; Wang, Rui 2 ; Lu, Huilin 1   VIAFID ORCID Logo 

 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 
 Coalfield Geology Bureau 102 Exploration Team of Jilin Province, Meihekou 135000, China 
First page
65
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761178233
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.