Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Peak load shaving using energy storage systems has been the preferred approach to smooth the electricity load curve of consumers from different sectors around the world. These systems store energy during off-peak hours, releasing it for usage during high consumption periods. Most of the current solutions use solar energy as a power source and chemical batteries as energy storage elements. Despite the clear benefits of this strategy, the service life of the battery energy storage system (BESS) is a driving factor for economic feasibility. The present research work proposes the use of storage systems based on actively connected batteries with power electronics support. The proposed scheme allows the individualized control of the power flow, enabling the use of batteries with different ages, technologies or degradation states in a same BESS. The presented results show that overcoming inherent limitations found in passively connected battery banks makes it possible to extend the system’s useful life and the total amount of dispatched energy by more than 50%. Experimental tests on a bench prototype with electronified batteries are carried out to proof the central concept of the proposed solution. Computational simulations using collected data from a photovoltaic plant support the conclusions and discussions on the achieved benefits.

Details

Title
Improving the Battery Energy Storage System Performance in Peak Load Shaving Applications
Author
Rocha, Anderson V 1   VIAFID ORCID Logo  ; Maia, Thales A C 2   VIAFID ORCID Logo  ; Filho, Braz J C 2   VIAFID ORCID Logo 

 Centro Federal de Educação Tecnológica de Minas Gerais—CEFET-MG, Belo Horizonte 30421-169, Brazil 
 Graduate Program in Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil 
First page
382
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761184026
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.