Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

At present, deep learning has achieved excellent achievements in image processing and computer vision and is widely used in the field of watermarking. Attention mechanism, as the research hot spot of deep learning, has not yet been applied in the field of watermarking. In this paper, we propose a deep learning and attention network for robust image watermarking (DARI-Mark). The framework includes four parts: an attention network, a watermark embedding network, a watermark extraction network, and an attack layer. The attention network used in this paper is the channel and spatial attention network, which calculates attention weights along two dimensions, channel and spatial, respectively, assigns different weights to pixels in different channels at different positions and is applied in the watermark embedding and watermark extraction stages. Through end-to-end training, the attention network can locate nonsignificant areas that are insensitive to the human eye and assign greater weights during watermark embedding, and the watermark embedding network selects this region to embed the watermark and improve the imperceptibility. In watermark extraction, by setting the loss function, larger weights can be assigned to watermark-containing features and small weights to noisy signals, so that the watermark extraction network focuses on features about the watermark and suppresses noisy signals in the attacked image to improve robustness. To avoid the phenomenon of gradient disappearance or explosion when the network is deep, both the embedding network and the extraction network have added residual modules. Experiments show that DARI-Mark can embed the watermark without affecting human subjective perception and that it has good robustness. Compared with other state-of-the-art watermarking methods, the proposed framework is more robust to JPEG compression, sharpening, cropping, and noise attacks.

Details

Title
DARI-Mark: Deep Learning and Attention Network for Robust Image Watermarking
Author
Zhao, Yimeng 1   VIAFID ORCID Logo  ; Wang, Chengyou 2   VIAFID ORCID Logo  ; Zhou, Xiao 2   VIAFID ORCID Logo  ; Qin, Zhiliang 3   VIAFID ORCID Logo 

 School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China 
 School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China; Shandong University–Weihai Research Institute of Industry Technology, Weihai 264209, China 
 School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China; Weihai Beiyang Electric Group Co., Ltd., Weihai 264209, China 
First page
209
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761187131
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.