Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Based on fracture mechanics theory, a finite element method was used to determine the stress intensity factors of the inclined crack on the inner surface of the pipe under axial compression load and external pressure. The effects of different influencing factors on the stress intensity factor along the crack front considering crack closure were systematically explored, which were different to those under internal pressure. The effects of high aspect ratio on KII, the crack inclination asymmetry caused by curvature and the effects of the friction coefficient on the stress intensity factors of the pipe with an inclined inner surface crack under axial compression load and external pressure were explored in this paper. To be fit for defect assessment, the solutions for stress intensity factors KII and KIII were derived, and new correction factors fθ and fμ were proposed in the empirical solutions to accommodate the crack inclination asymmetry and the friction coefficient, respectively.

Details

Title
Empirical Solution of Stress Intensity Factors for the Inclined Inner Surface Crack of Pipe under External Pressure and Axial Compression
Author
Xi-Ming, Yao 1 ; Yu-Chen, Zhang 1 ; Pei, Qi 1 ; Li-Zhu, Jin 1 ; Tian-Hao, Ma 1 ; Xiao-Hua, He 1 ; Chang-Yu, Zhou 1 

 School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China; Jiangsu Key Lab of Design and Manufacture of Extreme Pressure Equipment, Nanjing 211816, China 
First page
364
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761192431
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.