Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The flexible surface-enhanced Raman scattering (SERS) sensor, which has the bionic 3D nanoarray structure of a beetle-wing substrate (BWS), was successfully prepared by replicated technology and thermal evaporation. The bionic structure was replicated with polydimethylsiloxane (PDMS) and then silver (Ag) nanoisland thin films were deposited by thermal evaporation. The deposition times and thicknesses (25–40 nm) of the Ag thin films were manipulated to find the optimal SERS detection capability. The Ag nanoisland arrays on the surface of the bionic replicated PDMS were observed by scanning electron microscope (SEM), X-ray diffraction (XRD), and contact angle, which can generate strong and reproducible three-dimensional hotspots (3D hotspots) to enhance Raman signals. The water pollutant, rhodamine 6G (R6G), was used as a model molecule for SERS detection. The results show that 35 nm Ag deposited on a PDMS-BWS SERS substrate displays the strongest SERS intensity, which is 10 times higher than that of the pristine BWS with 35 nm Ag coating, due to the excellent 3D bionic structure. Our results demonstrate that bionic 3D SERS sensors have the potential to be applied in wearable devices and sensors to detect biomolecules and environmental pollutants, such as industrial wastewater, in the future.

Details

Title
Flexible PDMS-Based SERS Substrates Replicated from Beetle Wings for Water Pollutant Detection
Author
Chen-Hsin, Lu 1 ; Ming-Ren, Cheng 1 ; Chen, Sheng 1 ; Wei-Lin, Syu 2 ; Ming-Yen, Chien 2 ; Wang, Kuan-Syun 3 ; Chen, Jeng-Shiung 4 ; Po-Han, Lee 1 ; Ting-Yu, Liu 5   VIAFID ORCID Logo 

 The Affiliated Senior High School of National Taiwan Normal University, Taipei 10658, Taiwan 
 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan 
 Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan 
 Yottadeft Optoelectronics Technology Co., Ltd., Taipei 10460, Taiwan 
 Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Research Center for Intelligent Medical Devices, Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan 
First page
191
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761193555
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.