Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, modeling of optimized lattice mismatch by carbon-dioxide annealing on (In, Ga) co-doped ZnO multi-deposition thin films was investigated with crystallography and optical analysis. (In, Ga) co-doped ZnO multi-deposition thin films with various types of bottom layers were fabricated on sapphire substrates by solution synthesis, the spin coating process, and carbon-dioxide laser irradiation with post annealing. (In, Ga) co-doped ZnO multi-deposition thin films with Ga-doped ZnO as the bottom layer showed the lowest mismatch ratio between the substrate and the bottom layer of the film. The carbon-dioxide laser annealing process can improve electrical properties by reducing lattice mismatch. After applying the carbon-dioxide laser annealing process to the (In, Ga) co-doped ZnO multi-deposition thin films with Ga-doped ZnO as the bottom layer, an optimized sheet resistance of 34.5 kΩ/sq and a high transparency rate of nearly 90% in the visible light wavelength region were obtained.

Details

Title
Modeling of Optimized Lattice Mismatch by Carbon-Dioxide Laser Annealing on (In, Ga) Co-Doped ZnO Multi-Deposition Thin Films Introducing Designed Bottom Layers
Author
Yun, Jaeyong 1   VIAFID ORCID Logo  ; Min-Sung Bae 2 ; Jin Su Baek 1 ; Tae Wan Kim 2 ; Sung-Jin, Kim 3 ; Jung-Hyuk Koh 4 

 School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 06974, Republic of Korea 
 Department of Intelligent Energy and Industry, Chung-Ang University, Heukseok-ro, Seoul 06974, Republic of Korea 
 College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea 
 School of Electrical and Electronic Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Intelligent Energy and Industry, Chung-Ang University, Heukseok-ro, Seoul 06974, Republic of Korea 
First page
45
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761195510
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.