Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection is one of the most widespread applications for numerous Unmanned Aerial Vehicle (UAV) tasks. Due to the shooting angle and flying height of the UAV, compared with general scenarios, small objects account for a large proportion of aerial images, and common object detectors are not extremely effective in aerial images. Moreover, since the computing resources of UAV platforms are generally limited, the deployment of common detectors with a large number of parameters on UAV platforms is difficult. This paper proposes a lightweight object detector YOLO-UAVlite for aerial images. Firstly, the spatial attention module and coordinate attention module are modified and combined to form a novel Spatial-Coordinate Self-Attention (SCSA) module, which integrates spatial, location, and channel information to enhance object representation. On this basis, we construct a lightweight backbone, named SCSAshufflenet, which combines the Enhanced ShuffleNet (ES) network with the proposed SCSA module to improve feature extraction and reduce model size. Secondly, we propose an improved feature pyramid model, namely Slim-BiFPN, where we construct new lightweight convolutional blocks to reduce the information loss during the feature map fusion process while reducing the model weights. Finally, the localization loss function is modified to increase the bounding box regression rate while improving the localization accuracy. Extensive experiments conducted on the VisDrone-DET2021 dataset indicate that, compared with the YOLOv5-N baseline, the proposed YOLO-UAVlite reduces the number of parameters by 25.8% and achieves gains of 10.9% in mAP0.50. Compared with other lightweight detectors, both the mAP and the number of parameters are improved.

Details

Title
A Lightweight Object Detector Based on Spatial-Coordinate Self-Attention for UAV Aerial Images
Author
Liu, Chen 1   VIAFID ORCID Logo  ; Yang, Degang 1   VIAFID ORCID Logo  ; Tang, Liu 1 ; Zhou, Xun 2   VIAFID ORCID Logo  ; Deng, Yi 1 

 College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China 
 Party School of Yibin Committee of Communist Party of China, Yibin 644000, China 
First page
83
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761198462
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.