Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The variational optical flow model is used in this work to investigate a subgrid-scale optimization approach for modeling complex fluid flows in image sequences and estimating their two-dimensional velocity fields. To solve the problem of lack of sub-grid small-scale structure information in variational optical flow estimation, we combine the motion laws of incompressible fluids. Introducing the idea of large eddy simulation, the instantaneous motion can be decomposed into large-scale motion and a small-scale turbulence in the data term. The Smagorinsky model is used to model and solve the small-scale turbulence. The improved subgrid scale Horn–Schunck (SGS-HS) optical flow algorithm provides better results in velocity field estimation of turbulent image sequences than the traditional Farneback dense optical flow algorithm. To make the SGS-HS algorithm equally competent for the open channel flow measurement task, a velocity gradient constraint is chosen for the canonical term of the model, which is used to improve the accuracy of the SGS-HS algorithm in velocimetric experiments in the case of the relatively uniform flow direction of the open channel flow field. The experimental results show that our algorithm has better performance in open channel velocimetry compared with the conventional algorithm.

Details

Title
Subgrid Variational Optimized Optical Flow Estimation Algorithm for Image Velocimetry
Author
Xu, Haoxuan 1 ; Wang, Jianping 1   VIAFID ORCID Logo  ; Zhang, Ya 2 ; Zhang, Guo 1 ; Xiong, Zhaolong 1 

 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650000, China 
 Nanjing Institute of Water Resources and Hydrology Automation, Ministry of Water Resources, Nanjing 210000, China 
First page
437
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761203839
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.