Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Optical scanners are used frequently in medical imaging units to examine and diagnose cancers, assist with surgeries, and detect lesions and malignancies. The continuous growth in optics along with the use of optical fibers enables fabrication of imaging devices as small as a few millimeters in diameter. Most forward viewing endoscopic scanners contain an optical fiber acting as cantilever which is vibrated at resonance. In many cases, more than one actuating element is used to vibrate the optical fiber in two directions giving a 2D scan. In this paper, it is proposed to excite the cantilever fiber using a single actuator and scan a 2D region from its vibrating tip. An electrothermal actuator is optimized to provide a bidirectional (horizontal and vertical) displacement to the cantilever fiber placed on it. A periodic current, having a frequency equal to the resonant frequency of cantilever fiber, was passed through the actuator. The continuous expansion and contraction of the actuator enabled the free end of fiber to vibrate in a circle like pattern. A small change in the actuation frequency permitted the scanning of the area inside the circle.

Details

Title
Submillimeter Sized 2D Electrothermal Optical Fiber Scanner
Author
Kaur, Mandeep 1   VIAFID ORCID Logo  ; Menon, Carlo 2   VIAFID ORCID Logo 

 MENRVA Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Surrey, BC V3T 0A3, Canada 
 MENRVA Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Surrey, BC V3T 0A3, Canada; Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland 
First page
404
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761205669
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.