Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Underwater detection is accomplished using an underwater ultrasonic sensor, sound navigation and ranging (SONAR). Stealth to avoid detection by SONAR plays a major role in modern underwater warfare. In this study, we propose a smart skin that avoids detection by SONAR via controlling the signal reflected from an unmanned underwater vehicle (UUV). The smart skin is a multilayer transducer composed of an acoustic window, a double-layer receiver, and a single-layer transmitter. It separates the incident signal from the reflected signal from outside through the time-delay separation method and cancels the reflected wave from the phase-shifted transmission sound. The characteristics of the receiving and transmitting sensors were analyzed using a finite element analysis. Three types of devices were compared in the design of the sensors. Polyvinylidene fluoride (PVDF), which had little effect on the transmitted sound, was selected as the receiving sensor. A stacked piezoelectric transducer with high sensitivity compared to a cymbal transducer was used as the transmitter. The active reflection control system was modeled and verified using 2D 360° reflection experiments. The stealth effect that could be achieved by applying a smart skin to a UUV was presented through an active reflection–control omnidirectional reflection model.

Details

Title
Development of Multilayer Transducer and Omnidirectional Reflection Model for Active Reflection Control
Author
Park, Beom Hoon 1   VIAFID ORCID Logo  ; Han Bin Choi 1 ; Hee-Seon Seo 2 ; Yub Je 2 ; Hak Yi 3   VIAFID ORCID Logo  ; Park, Kwan Kyu 1   VIAFID ORCID Logo 

 Department of Convergence Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea 
 Maritime Technology Research Institute, Agency for Defense Development, Changwon 51682, Republic of Korea 
 Department of Mechanical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea 
First page
521
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761205675
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.