Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Water contaminated by microorganisms will seriously endanger public safety, as many diseases are caused by microorganisms, and water disinfection materials offer an effective method to solve this problem. In this work, a hierarchical porous structure cellulose sponge (CS) was constructed as the water disinfection filter substrate, where “long−chain” cellulose served as the skeleton to construct major pores, and “short−chain” cellulose filled the gaps between “long−chain” cellulose to construct minor pores. After CS was covalently modified by chlorogenic acid (CGA) to fabricate cellulose–chlorogenic acid sponge (C−CGAS), a hierarchical porous structure was retained. Due to the hierarchical porous structure, C−CGAS showed good mechanical stability (2.84% unrecoverable strain after 1000 compression cycles). Furthermore, C−CGAS also showed good antibacterial and antifungal abilities due to the antimicrobial ability and high water flux, and C−CGAS could eliminate 95% of E. coli within 0.5 h in the water disinfection test. Due to the stable covalent modification of CGA and its mechanical stability, C−CGAS showed no breakage, and even after nine consecutive use cycles, the antibacterial properties were almost unchanged. Thus, C−CGAS is a reusable and highly efficient water disinfection material. This study provides a new approach for the preparation of recyclable, safe, and efficient water disinfection materials.

Details

Title
A Hierarchical Porous Cellulose Sponge Modified with Chlorogenic Acid as a Antibacterial Material for Water Disinfection
Author
En-Jiang, Liu; Jia-Xing, Huang; Hu, Run-Ze; Xiao-Hui, Yao; Wei-Guo, Zhao; Dong-Yang, Zhang; Chen, Tao
First page
773
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761210636
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.