It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Context
As the interest on the research of plant derived bioactive peptides (BPs) for nutraceutical, cosmeceutical and medical applications is increasing, in this work, the application of peptide derived from broccoli to keratinocytes was studied.
ObjectiveWe focussed on the characterization of different peptides hydrolysates from broccoli stems [extracted from total protein (E) and from membrane protein (MF)], and their activity when applied to human keratinocytes.
Materials and methodsPeptide mixtures from broccoli stems (E and MF) were characterized by proteomics. They were applied to HaCaT cells in order to study cytotoxicity in a concentration range between 20 and 0.15625 µg of protein/mL and wound healing was studied after 24 and 48 h of treatment application. Also, proteomic and gene expression of keratinocytes were analysed.
ResultsDepending on the source, proteins varied in peptide and amino acid composition. An increased proliferation of keratinocytes was shown after the application of the E peptides mixtures, reaching 190% with the lowest concentrations, but enhanced wound healing repair with E and MF appeared, reaching 59% of wound closure after 48 h. At the gene expression and protein levels of keratinocytes, the upregulation of anti-oncogene p53 and keratinization factors were observed.
DiscussionThese results suggest that peptide mixtures obtained from broccoli augmented cell proliferation and prevented the carcinogenic, uncontrolled growth of the cells, with different mechanisms depending on the protein source.
ConclusionsThe results encourage the opening of new lines of research involving the use of Brassica peptides for pharmaceutic or cosmetic use.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain





