It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Gaining meaningful blood samples from water-breathing fish is a significant challenge. Two main methods typically used are grab ‘n’ stab and surgical cannulation. Both methods have benefits, but also significant limitations under various scenarios. Here we present a method of blood sampling laboratory fish involving gradual induction of anaesthesia within their home tank, avoiding physical struggling associated with capture, followed by rapid transfer to a gill irrigation system to maintain artificial ventilation via adequate gill water flow and then followed by sampling the caudal vasculature. This method negates many blood chemistry disturbances associated with grab ‘n’ stab (i.e., low pH and oxygen, elevated lactate, CO2 and stress hormones) and generates results that are directly comparable to cannulated fish under a wide range of experimentally-induced acid–base scenarios (acidosis and alkalosis). Crucially this method was successful in achieving accurate acid–base blood measurements from fish ten times smaller than are typically suitable for cannulation. This opens opportunities not previously possible for studies that relate to basic physiology, sustainable aquaculture, ecotoxicology, conservation, and climate change.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Exeter, Biosciences Department, College of Life and Environmental Sciences, Exeter, UK (GRID:grid.8391.3) (ISNI:0000 0004 1936 8024)
2 International Zinc Association, Brussels, Belgium (GRID:grid.450950.d) (ISNI:0000 0001 0340 392X)
3 Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, UK (GRID:grid.15756.30) (ISNI:000000011091500X)