Full Text

Turn on search term navigation

© 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hydrodynamic focusing capable of readily producing and controlling laminar flow facilitates drug treatment of cells in existing microfluidic culture devices. However, to expand applications of such devices to multiparameter drug testing, critical limitations in current hydrodynamic focusing microfluidics must be addressed. Here we describe hydrodynamic focusing and shifting as an advanced microfluidics tool for spatially selective drug delivery and integrative cell-based drug testing. We designed and fabricated a co-flow focusing, three-channel microfluidic device with a wide cell culture chamber. By controlling inlet flow rates of sample and two side solutions, we could generate hydrodynamic focusing and shifting that mediated precise regulation of the path and width of reagent and drug stream in the microfluidic device. We successfully validated a hydrodynamic focusing and shifting approach for spatially selective delivery of DiI, a lipophilic fluorophore, and doxorubicin, a chemotherapeutic agent, to tumor cells in our device. Moreover, subsequent flowing of a trypsin EDTA solution over the cells that were exposed to doxorubicin flow allowed us to selectively collect the treated cells. Our approach enabled downstream high-resolution microscopy of the cell suspension to confirm the nuclear delivery of doxorubicin into the tumor cells. In the device, we could also evaluate in situ the cytotoxic effect of doxorubicin to the tumor cells that were selectively treated by hydrodynamic flow focusing and shifting. These results show that hydrodynamic focusing and shifting enable a fast and robust approach to spatially treat and then collect cells in an optimized microfluidic device, offering an integrative assay tool for efficient drug screening and discovery.

Details

Title
Spatially selective cell treatment and collection for integrative drug testing using hydrodynamic flow focusing and shifting
Author
Wang, Xu; Zheng, Jingtian; Iyer, Maheshwar Adiraj; Szmelter, Adam Henry; Eddington, David T; Steve Seung-Young Lee  VIAFID ORCID Logo 
First page
e0279102
Section
Research Article
Publication year
2023
Publication date
Jan 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2766403661
Copyright
© 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.