Abstract

Waves of SARS-CoV-2 infection have resulted from the emergence of viral variants with neutralizing antibody resistance mutations. Simultaneously, repeated antigen exposure has generated affinity matured B cells, producing broadly neutralizing receptor binding domain (RBD)-specific antibodies with activity against emergent variants. To determine how SARS-CoV-2 might escape these antibodies, we subjected chimeric viruses encoding spike proteins from ancestral, BA.1 or BA.2 variants to selection by 40 broadly neutralizing antibodies. We identify numerous examples of epistasis, whereby in vitro selected and naturally occurring substitutions in RBD epitopes that do not confer antibody resistance in the Wuhan-Hu-1 spike, do so in BA.1 or BA.2 spikes. As few as 2 or 3 of these substitutions in the BA.5 spike, confer resistance to nearly all of the 40 broadly neutralizing antibodies, and substantial resistance to plasma from most individuals. Thus, epistasis facilitates the acquisition of resistance to antibodies that remained effective against early omicron variants.

Witte et al show that previously acquired substitutions in the SARS-CoV-2 spike protein enable the acquisition of new antibody escape substitutions. New and old substitutions interact to enable escape from broadly neutralizing antibodies.

Details

Title
Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape
Author
Witte, Leander 1   VIAFID ORCID Logo  ; Baharani, Viren A. 2 ; Schmidt, Fabian 1 ; Wang, Zijun 3 ; Cho, Alice 3 ; Raspe, Raphael 3   VIAFID ORCID Logo  ; Guzman-Cardozo, Camila 1 ; Muecksch, Frauke 1 ; Canis, Marie 1 ; Park, Debby J. 1 ; Gaebler, Christian 3   VIAFID ORCID Logo  ; Caskey, Marina 3   VIAFID ORCID Logo  ; Nussenzweig, Michel C. 4   VIAFID ORCID Logo  ; Hatziioannou, Theodora 1   VIAFID ORCID Logo  ; Bieniasz, Paul D. 5   VIAFID ORCID Logo 

 The Rockefeller University, Laboratory of Retrovirology, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519) 
 The Rockefeller University, Laboratory of Retrovirology, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519); The Rockefeller University, Laboratory of Molecular Immunology, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519) 
 The Rockefeller University, Laboratory of Molecular Immunology, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519) 
 The Rockefeller University, Laboratory of Molecular Immunology, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519); The Rockefeller University, Howard Hughes Medical Institute, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519) 
 The Rockefeller University, Laboratory of Retrovirology, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519); The Rockefeller University, Howard Hughes Medical Institute, New York, USA (GRID:grid.134907.8) (ISNI:0000 0001 2166 1519) 
Pages
302
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2766597097
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.