Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Within process mining, discovery techniques make it possible to construct business process models automatically from event logs. However, results often do not achieve a balance between model complexity and fitting accuracy, establishing a need for manual model adjusting. This paper presents an approach to process mining that provides semi-automatic support to model optimization based on the combined assessment of model complexity and fitness. To balance complexity and fitness, a model simplification approach is proposed, which abstracts the raw model at the desired granularity. Additionally, we introduce a concept of meta-states, a cycle collapsing in the model, which can potentially simplify the model and interpret it. We aim to demonstrate the capabilities of our technological solution using three datasets from different applications in the healthcare domain. These are remote monitoring processes for patients with arterial hypertension and workflows of healthcare workers during the COVID-19 pandemic. A case study also investigates the use of various complexity measures and different ways of solution application, providing insights on better practices in improving interpretability and complexity/fitness balance in process models.

Details

Title
Extending Process Discovery with Model Complexity Optimization and Cyclic States Identification: Application to Healthcare Processes
Author
Elkhovskaya, Liubov O 1 ; Kshenin, Alexander D 1 ; Balakhontceva, Marina A 1 ; Ionov, Mikhail V 2   VIAFID ORCID Logo  ; Kovalchuk, Sergey V 1   VIAFID ORCID Logo 

 Faculty of Digital Transformations, ITMO University, Saint Petersburg 197101, Russia 
 Research Laboratory for Arterial Hypertension Pathogenesis and Treatment, Almazov National Medical Research Center, Saint Petersburg 197341, Russia 
First page
57
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767122586
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.