Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Two-dimensional material (2DM)-based Field-Effect Transistors (FETs) have been postulated as a solid alternative for biosensing applications thanks to: (i) the possibility to enable chemical sensitivity by functionalization, (ii) an atomically thin active area which guarantees optimal electrostatic coupling between the sensing layer and the electronic active region, and (iii) their compatibility with large scale fabrication techniques. Although 2DM-based BioFETs have demonstrated notable sensing capabilities, other relevant aspects, such as the yield or device-to-device variability, will demand further evaluation in order to move them from lab-to-fab applications. Here, we focus on the latter aspect by analyzing the performance of MoS2-based BioFETs for the detection of DNA molecules. In particular, we explore the impact of the randomized location and activation of the receptor molecules at the sensing interface on the device response. Several sensing interface configurations are implemented, so as to evaluate the sensitivity dependence on device-to-device variability.

Details

Title
Variability Assessment of the Performance of MoS2-Based BioFETs
Author
Cuesta-Lopez, Juan  VIAFID ORCID Logo  ; Toral-Lopez, Alejandro  VIAFID ORCID Logo  ; Marin, Enrique G  VIAFID ORCID Logo  ; Ruiz, Francisco G  VIAFID ORCID Logo  ; Pasadas, Francisco  VIAFID ORCID Logo  ; Medina-Rull, Alberto  VIAFID ORCID Logo  ; Godoy, Andres  VIAFID ORCID Logo 
First page
57
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767187238
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.