Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ivory nut seeds have been traditionally exploited in Central and South America for obtaining vegetable ivory. The residues from this industry are susceptible to valorization as a source of fatty acids (by organic extraction) and mannans (by alkaline dissolution and regeneration). Nonetheless, cellulose may also be recovered at the end of this fractionation process by acid hydrolysis and functionalization, with associated advantages over other lignocellulosic sources due to the absence of lignin in the endospermic tissue. In this work, various experimental parameters (sulfuric acid concentration, temperature, and hydrolysis time) were investigated to optimize the processing conditions for preparing stable nanocellulose suspensions after ultrasonication. The most stable nanocellulose gel (1 wt% solid content) was obtained after 4-h hydrolysis at 60 °C with 8 M H2SO4 and was characterized by using complementary tech-niques, including dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), nano-fibril sulfation measurements, vibrational and solid-state nuclear magnetic resonance (CP/MAS 13C-NMR) spectroscopies, and thermal analysis. This nanocellulose hydrogel is susceptible to further utilization in various applications and fields, e.g., in agricul-ture for controlling the release of agrochemicals, in pharmaceutics for developing new dosage forms, and in the treatment of wastewater from the textile and paper industries.

Details

Title
Opportunities for Ivory Nut Residue Valorization as a Source of Nanocellulose Colloidal Suspensions
Author
Carvajal-Barriga, Enrique Javier 1   VIAFID ORCID Logo  ; Putaux, Jean-Luc 2   VIAFID ORCID Logo  ; Martín-Ramos, Pablo 3   VIAFID ORCID Logo  ; Simbaña, Jennifer 1 ; Portero-Barahona, Patricia 1 ; Martín-Gil, Jesús 4   VIAFID ORCID Logo 

 Neotropical Center for the Biomass Research, School of Biological Sciences, Pontificia Universidad Católica del Ecuador Av. 12 de Octubre 1076 y Roca, Quito 170523, Ecuador 
 University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France 
 Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain; Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain 
 Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain 
First page
32
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23102861
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767206521
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.