Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Over the last decade, various deep neural network models have achieved great success in image recognition and classification tasks. The vast majority of high-performing deep neural network models have a huge number of parameters and often require sacrificing performance and accuracy when they are deployed on mobile devices with limited area and power consumption. To address this problem, we present an SSD-MobileNet-v1 acceleration method based on network compression and subgraph fusion for Field-Programmable Gate Arrays (FPGAs). Firstly, a regularized pruning algorithm based on sensitivity analysis and Filter Pruning via Geometric Median (FPGM) was proposed. Secondly, the Quantize Aware Training (QAT)-based network full quantization algorithm was designed. Finally, a strategy for computing subgraph fusion is proposed for FPGAs to achieve continuous scheduling of Programmable Logic (PL) operators. The experimental results show that using the proposed acceleration strategy can reduce the number of model parameters by a factor of 11 and increase the inference speed on the FPGA platform by a factor of 9–10. The acceleration algorithm is applicable to various mobile edge devices and can be applied to the real-time monitoring of forest fires to improve the intelligence of forest fire detection.

Details

Title
An SSD-MobileNet Acceleration Strategy for FPGAs Based on Network Compression and Subgraph Fusion
Author
Tan, Shoutao 1   VIAFID ORCID Logo  ; Fang, Zhanfeng 1 ; Liu, Yanyi 1   VIAFID ORCID Logo  ; Wu, Zhe 1 ; Du, Hang 1 ; Xu, Renjie 2 ; Liu, Yunfei 1   VIAFID ORCID Logo 

 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China 
 Department of Computing and Software, McMaster University, Hamilton, ON L8S 4L8, Canada 
First page
53
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767211473
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.