Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Near-zero carbon emission power (NZCEP) plants, consisting of gas-fired units; wind turbines; power-to-gas (P2G); and carbon capture, utilization and storage (CCUS) systems, have recently received a lot of attention due to their enormous benefits in reducing carbon emissions and increasing the consumption of renewable energy. However, a complex environment of interest and a combination of risks makes their development very slow. This paper establishes a risk analysis framework for NZCEP considering multi-stakeholder participation. Firstly, a synthetic risk factor system was constructed based on stakeholders’ interests. Subsequently, interval type II trapezoidal fuzzy numbers were used and final weights were calculated from both subjective and objective aspects. Finally, we applied an acronym in Portuguese of the interactive and multi-criteria decision-making (TODIM) method to site selection to achieve a balance of interests of all stakeholders. In addition, a case study was conducted. The case result demonstrates that Zhengzhou in Henan Province is the best choice for a NZCEP power plant. A further finding is that government plays an important role in the development of NZCEP plants, with site selection results being the most sensitive to changes in the government’s risk appetite. Moreover, human resources are an important factor in the siting of an NZCEP plant.

Details

Title
An Optimal Site Selection Framework for Near-Zero Carbon Emission Power Plants Based on Multiple Stakeholders
Author
Li, Yanbin 1 ; Sun, Yanting 1   VIAFID ORCID Logo  ; Kang, Yulin 2   VIAFID ORCID Logo  ; Zhang, Feng 1 ; Zhang, Junjie 3 

 School of Economics and Management, North China Electric Power University, Beijing 102206, China; Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China 
 Chinese Research Academy of Environmental Sciences, Beijing 100012, China 
 Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China 
First page
797
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767214535
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.