Full Text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The split Hopkinson pressure bars (SHPB) system is the most commonly employed machine to study the dynamic characteristics of different materials under high strain rates. In this research, a numerical investigation is carried out to study different bar shapes such as square, hexagonal, and triangular cross-sections and to compare them with the standard cylindrical bars. The 3D finite element model developed for circular cross-sectional shapes was first validated with the experimental results and then compared with the other proposed shapes. In most scientific research, cylindrical cross-section bars with a square cross-section specimen are traditionally used as they have several advantages, such as in situ imaging of the side surfaces of the specimen during stress wave propagation. Moreover, the flat surfaces of the proposed shapes counter the problem of debonding strain gauges, especially at high impact pressures. Comparison of the results showed an excellent confirmation of the sample dynamic behaviour and different geometric shapes of the bar geometries, which validates the choice of the appropriate system.

Details

Title
Dynamic Composite Materials Characterisation with Hopkinson Bars: Design and Development of New Dynamic Compression Systems
Author
Tarfaoui, Mostapha 1   VIAFID ORCID Logo 

 ENSTA Bretagne, IRDL, UMR CNRS 6027, F-29200 Brest, France; [email protected]; Green Energy Park (IRESEN/UM6P), Benguerir 43150, Morocco 
First page
33
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767221376
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.