Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study focuses on modeling the yeast fermentation process using the hybrid modeling method. To improve the prediction accuracy of the model and reduce the model training time, this paper presents a semi−supervised hybrid modeling method based on an extreme learning machine for the yeast fermentation process. The hybrid model is composed of the mechanism model and the residual model. The residual model is built from the residuals between the real yeast fermentation process and the mechanism model. The residual model is used in parallel with the mechanism model. Considering that the residuals might be related to the inaccurate parameters or structure of the process, the mechanism model output is taken as unlabeled data, and the suitable inputs are selected based on Pearson’s maximum correlation and minimum redundancy criterion (RRPC). Meanwhile, an extreme learning machine is employed to improve the model’s training speed while maintaining the model’s prediction accuracy. Consequently, the proposal proved its efficacy through simulation.

Details

Title
Semi−Supervised Hybrid Modeling of the Yeast Fermentation Process
Author
Zhao, Meng  VIAFID ORCID Logo  ; Zhao, Shunyi; Liu, Fei  VIAFID ORCID Logo 
First page
63
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767235031
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.