Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Souss Basin is a dryland environment featuring soil, surface and climatic conditions enhancing processes of wind erosion and mineral and organic dust emissions while subject to frequent grazing, tillage and driving. The fine-grained compacted surfaces are covered by physical and biological crusts and stone cover and are sparsely vegetated by open argan woodland and patchily distributed bushes. Wind-tunnel experiments and soil sampling were conducted on the deeply incised alluvial fans originating from High Atlas and Anti-Atlas mountains to investigate the dryland ecosystem, including the open argan woodland, for information on local wind-induced relocation processes and associated dust emission potential. To investigate possible connections between dryland environmental traits and dust emissions, we used two approaches: (a) surface categories (stone cover, crust and cohesionless sand) and (b) Land Cover Classes (wasteland, woodland and wadi). The results indicate omnipresent dynamic aeolian surface processes on a local to regional scale. Wind impact is a powerful trigger for the on-site relocation of available mineral and organic dust and may be crucial to explain the heterogeneous spatial distribution of soil organic carbon and nutrients associated with mineral fines. Aeolian dust flux showed statistically significant relations with surface categories and, to some extent, with Land Cover Classes. While wind erosion processes are key to understanding on-site sediment and nutrient dynamics between fertile dryland islands, the results also indicate a considerable dust emission potential under increasing climate impact and anthropogenic pressure.

Details

Title
Wind Tunnel Tests Reveal Aeolian Relocation Processes Related to Land Cover and Surface Characteristics in the Souss Basin, Morocco
Author
Marzen, Miriam 1 ; Kirchhoff, Mario 1 ; Ali Aït Hssaine 2 ; Ries, Johannes B 1 

 Department of Physical Geography, Trier University, DE-54286 Trier, Germany 
 Department of Geography, Université Ibn Zohr, Agadir MA-80060, Morocco 
First page
40
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767241534
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.