Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metallurgical coke with high strength and low reactivity is used in the ironmaking blast furnace. Replacement of some coking coal with bio-coal was shown to result in lower strength and higher reactivity of produced coke due to introduction of reactive bio-coal carbon and ash components catalyzing the Boudouard reaction, but also due to lowering of the coking coal blend fluidity, which influences coke strength and reactivity negatively. The current study aims to investigate the possibility to counteract negative impact from bio-coal addition on fluidity and coke reactivity by using high-fluidity coking coal and by agglomeration of bio-coal before addition. Original bio-coal and micro-agglomerate of bio-coal was added at 10%, 15% and 20% to the coking coal blend. The influence of bio-coals on the coke reactivity was measured by using CO2 in a thermogravimetric analyzer. Selected cokes and bio-cokes were produced in technical scale, and their reactivity and strength were measured in standard tests. The effect on dilatation of adding bio-coal or crushed agglomerates of bio-coal to the coking coal blends was measured in an optical dilatometer. The results show that by using a coking coal blend containing high-fluidity coal with agglomerated bio-coal, the max. contraction is increased, whereas the opposite occurs by using original bio-coal. The results show overlapping between contraction occurring before dilatation and during dilation, which affects max. dilatation. The bio-coke containing high-fluidity coal with agglomerated bio-coal has lower reactivity in comparison to bio-cokes with original bio-coal or bio-coke with agglomerated bio-coal produced from a coking coal blend without high-fluidity coal. The reactivity of coke produced in technical scale, as measured in CRI/CSR tests, shows a similar trend regarding reactivity, as measured by thermogravimetric analysis, on coke produced in laboratory scale.

Details

Title
The Effect of Bio-Coal Agglomeration and High-Fluidity Coking Coal on Bio-Coke Quality
Author
El-Tawil, Asmaa A 1 ; Björkman, Bo 2 ; Lundgren, Maria 3   VIAFID ORCID Logo  ; Lena Sundqvist Ökvist 1 

 MiMeR, Luleå University of Technology, 97187 Luleå, Sweden; Swerim AB, Box 812, 97125 Luleå, Sweden 
 MiMeR, Luleå University of Technology, 97187 Luleå, Sweden 
 Swerim AB, Box 812, 97125 Luleå, Sweden 
First page
175
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767252350
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.