Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The new heterometallic compounds, [{Cu(pn)2}2Ni(NCS)6]n·2nH2O (1), [{CuII(trien)}2Ni(NCS)6CuI(NCS)]n (2) and [Cu(tren)(NCS)]4[Ni(NCS)6] (3) (pn = 1,2-diaminopropane, trien = triethylenetetramine and tren = tris(2-aminoethylo)amine), were obtained and characterized by X-ray analysis, IR spectra, XAS and magnetic measurements. Compounds 1, 2 and 3 show the structural diversity of 2D, 1D and 0D compounds, respectively. Depending on the polyamine used, different coordination polyhedron for Cu(II) was found, i.e., distorted octahedral (1), square pyramidal (2) and trigonal bipyramidal (3), whereas coordination polyhedron for nickel(II) was always octahedral. It provides an approach for tailoring magnetic properties by proper selection of auxiliary ligands determining the topology. In 1, thiocyanate ligands form bridges between the copper and nickel ions, creating 2D layers of sql topology with weak ferromagnetic interactions. Compound 2 is a mixed-valence copper coordination polymer and shows the rare ladder topology of 1D chains decorated with [CuII(tren)]2+ antennas as the side chains attached to nickel(II). The ladder rails are formed by alternately arranged Ni(II) and Cu(I) ions connected by N2 thiocyanate anions and rungs made by N3 thiocyanate. For the Cu(I) ions, the tetrahedral thiocyanate environment mixed N/S donor atoms was found, confirming significant coordination spheres rearrangement occurring at the copper precursor together with the reduction in some Cu(II) to Cu(I). Such topology enables significant simplification of the magnetic properties modeling by assuming magnetic coupling inside {NiIICuII2} trinuclear units separated by diamagnetic [Cu(NCS)(SCN)3]3− linkers. Compound 3 shows three discrete mononuclear units connected by N-H…N and N-H…S hydrogen bonds. Analysis of XAS proves that the average ligand character and the covalency of the unoccupied metal d-based orbitals for copper(II) and nickel(II) increase in the following order: 123. In 1 and 2, a weak ferromagnetic coupling between copper(II) and nickel(II) was found, but in 2, additional and stronger antiferromagnetic interaction between copper(II) ions prevailed. Compound 3, as an ionic pair, shows, as expected, a spin-only magnetic moment.

Details

Title
Structural Diversity, XAS and Magnetism of Copper(II)-Nickel(II) Heterometallic Complexes Based on the [Ni(NCS)6]4− Unit
Author
Tereba, Natalia 1   VIAFID ORCID Logo  ; Muzioł, Tadeusz M 1   VIAFID ORCID Logo  ; Wiśniewska, Joanna 1   VIAFID ORCID Logo  ; Podgajny, Robert 2   VIAFID ORCID Logo  ; Bieńko, Alina 3   VIAFID ORCID Logo  ; Wrzeszcz, Grzegorz 1   VIAFID ORCID Logo 

 Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland 
 Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland 
 Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wrocław, Poland 
First page
731
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767252816
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.