Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Printed circuit boards (PCBs) are a valuable source of raw materials for metal recycling considering that base metal concentration analyses have confirmed that PCB powders are multimetallic in nature and contain high concentrations of Cu, Zn, Ni, and Fe. Given that minerals are not renewable resources, these metals can be recycled through hydrometallurgical processes. In this study, we determined that 2 M sulfuric acid, 0.55 MPa oxygen pressure, and a temperature of 90 °C represent the optimal conditions for leaching of Cu, Zn, and Ni of PCBs, obtaining the highest observed values of recovery of greater than 90% for Zn and 98% for Cu and Ni. The characterization of PCBs by SEM–EDS analyses showed that plates mainly consist of Cu, Ni, and Zn. PCBs can be seen as a potential secondary resource for the recovery of copper, nickel, and zinc. The best potential and pH conditions for the extraction of Cu, Zn, and Ni were also determined on the basis of thermodynamic diagrams.

Details

Title
Base Metals Extraction from Printed Circuit Boards by Pressure Acid Leaching
Author
Martinez-Ballesteros, Guadalupe 1 ; Valenzuela-Garcia, Jesus Leobardo 1   VIAFID ORCID Logo  ; Gomez-Alvarez, Agustin 1 ; Encinas-Romero, Martin Antonio 1 ; Mejia-Zamudio, Flerida Adriana 1 ; Aaron de Jesus Rosas-Durazo 2 

 Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo 83000, Mexico 
 Department of Biomedical, Technological Institute of Hermosillo, Hermosillo 83100, Mexico 
First page
98
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767264361
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.