Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the current study, diosmin (DSM)-loaded beta-cyclodextrin (β-CD)-based nanosponges (NSPs) using diphenylcarbonate (DPC) as a cross-linker were prepared. Four different DSM-loaded NSPs (D-NSP1-NSP4) were developed by varying the molar ratio of β-CD: DCP (1:15–1:6). Based on preliminary evaluations, NSPs (D-NSP3) were optimized for size (412 ± 6.1 nm), polydispersity index (PDI) (0.259), zeta potential (ZP) (−10.8 ± 4.3 mV), and drug loading (DL) (88.7 ± 8.5%), and were further evaluated by in vitro release, scanning electron microscopy (SEM), and in vitro antioxidant studies. The NSPs (D-NSP3) exhibited improved free radical scavenging activity (85.58% at 100 g/mL) compared to pure DSM. Dissolution efficiency (%DE) was enhanced to 71.50% (D-NSP3) from plain DSM (58.59%). The D-NSP3 formulation followed the Korsmeyer–Peppas kinetic model and had an n value of 0.529 indicating a non-Fickian and controlled release by diffusion and relaxation. The D-NSP3 showed cytotoxic activity against MCF-7 breast cancer, as evidenced by caspase 3, 9, and p53 activities. According to the findings, DSM-loaded NSPs might be a promising therapy option for breast cancer.

Details

Title
Preparation and Evaluation of Diosmin-Loaded Diphenylcarbonate-Cross-Linked Cyclodextrin Nanosponges for Breast Cancer Therapy
Author
Md Khalid Anwer 1   VIAFID ORCID Logo  ; Ahmed, Mohammed Muqtader 1   VIAFID ORCID Logo  ; Aldawsari, Mohammed F 1   VIAFID ORCID Logo  ; Iqbal, Muzaffar 2   VIAFID ORCID Logo  ; Kumar, Vinay 3 

 Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia 
 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia 
 DTC Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India 
First page
19
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767266321
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.