Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Colored imaging of magnetic nanoparticles (MNP) is a promising noninvasive method for medical applications such as therapy and diagnosis. This study investigates the capability of the magnetoelectric sensor and projected gradient descent (PGD) algorithm for colored particle detection. In the first step, the required circumstances for image reconstruction are studied via a simulation approach for different signal-to-noise ratios (SNR). The spatial accuracy of the reconstructed image is evaluated based on the correlation coefficient (CC) factor. The inverse problem is solved using the PGD method, which is adapted according to a nonnegativity constraint in the complex domain. The MNP characterizations are assessed through a magnetic particle spectrometer (MPS) for different types. In the experimental investigation, the real and imaginary parts of the MNP’s response are used to detect the spatial distribution and particle type, respectively. The experimental results indicate that the average phase difference for CT100 and ARA100 particles is 14 degrees, which is consistent with the MPS results and could satisfy the system requirements for colored imaging. The experimental evaluation showed that the magnetoelectric sensor and the proposed approach could be potential candidates for color bio-imaging applications.

Details

Title
Numerical and Experimental Study of Colored Magnetic Particle Mapping via Magnetoelectric Sensors
Author
Ron-Marco, Friedrich  VIAFID ORCID Logo  ; Sadeghi, Mohammad  VIAFID ORCID Logo  ; Faupel, Franz  VIAFID ORCID Logo 
First page
347
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767275032
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.