Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Piezoelectric accelerometers using a lead-free (K,Na)NbO3 (KNN) piezoceramic modified by a mixture of two Bi-based perovskites, Bi(Na,K,Li)ZrO3 (BNKLZ) and BiScO3 (BS), were designed, fabricated and characterized. Ring-shaped ceramics were prepared using a conventional solid-state reaction method for integration into a compression-mode accelerometer. A beneficial rhombohedral–tetragonal (R–T) phase boundary structure, especially enriched with T phase, was produced by modifying intrinsic phase transition temperatures, yielding a large piezoelectric charge coefficient d33 (310 pC/N) and a high Curie temperature Tc (331 °C). Using finite element analyses with metamodeling techniques, four optimum accelerometer designs were obtained with high magnitudes of charge sensitivity Sq and resonant frequency fr, as evidenced by two key performance indicators having a trade-off relation. Finally, accelerometer sensor prototypes based on the proposed designs were fabricated using the KNN-BNKLZ-BS ceramic rings, which exhibited high levels of Sq (55.1 to 223.8 pC/g) and mounted fr (14.1 to 28.4 kHz). Perfect charge-to-acceleration linearity as well as broad flat frequency ranges were achieved with excellent reliability. These outstanding sensing performances confirm the potential application of the modified-KNN ceramic in piezoelectric sensors.

Details

Title
Lead-Free Piezoelectric Acceleration Sensor Built Using a (K,Na)NbO3 Bulk Ceramic Modified by Bi-Based Perovskites
Author
Min-Ku, Lee  VIAFID ORCID Logo  ; Kim, Byung-Hoon; Lee, Gyoung-Ja
First page
1029
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767293425
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.