Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The revolution generated by the Internet of Things (IoT) has radically changed the world; countless objects with remote sensing, actuation, analysis and sharing capabilities are interconnected over heterogeneous communication networks. Consequently, all of today’s devices can connect to the internet and can provide valuable information for decision making. However, the data collected by different devices are in different formats, which makes it necessary to develop a solution that integrates comprehensive semantic tools to represent, integrate and acquire knowledge, which is a major challenge for IoT environments. The proposed solution addresses this challenge by using IoT semantic data to reason about actionable knowledge, combining next-generation semantic technologies and artificial intelligence through a set of cognitive components that enables easy interoperability and integration for both legacy systems and emerging technologies, such as IoT, to generate business value in terms of faster analytics and improved decision making. Thus, combining IoT environments with cognitive artificial intelligence services, COSIBAS builds an abstraction layer between existing platforms for IoT and AI technologies to enable cognitive solutions and increase interoperability across multiple domains. The resulting low-cost cross platform supports scalability and the evolution of large-scale heterogeneous systems and allows the modernization of legacy infrastructures with cognitive tools and communication mechanisms while reusing assets.

Details

Title
COSIBAS Platform—Cognitive Services for IoT-Based Scenarios: Application in P2P Networks for Energy Exchange
Author
Diego Gutiérrez Martín 1 ; Sebastian Lopez Florez 2   VIAFID ORCID Logo  ; González-Briones, Alfonso 3   VIAFID ORCID Logo  ; Corchado, Juan M 4   VIAFID ORCID Logo 

 Air Institute, IoT Digital Innovation Hub (Spain), Carbajosa de la Sagrada, 37188 Salamanca, Spain 
 Air Institute, IoT Digital Innovation Hub (Spain), Carbajosa de la Sagrada, 37188 Salamanca, Spain; Grupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Calle Espejo 2, 24.2, 37007 Salamanca, Spain 
 Grupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Calle Espejo 2, 24.2, 37007 Salamanca, Spain 
 Air Institute, IoT Digital Innovation Hub (Spain), Carbajosa de la Sagrada, 37188 Salamanca, Spain; Grupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Calle Espejo 2, 24.2, 37007 Salamanca, Spain; Department of Electronics, Information and Communication, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan; Pusat Komputeran dan Informatik, Universiti Malaysia Kelantan, Karung Berkunci 36, Pengkaan Chepa, Kota Bharu 16100, Malaysia 
First page
982
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767296469
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.