Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In practical logistic distributions, uncertainties may exist in each distribution process, and sometimes suppliers have to take undesirable measures to deal with the subsequent schedule variances. In light of the uncertainty of customers in logistics distribution and the widely applied two-dimensional loading patterns in transportation, we propose and formulate a two-dimensional loading-constrained vehicle routing problem with stochastic customers (2L-VRPSC), where each customer has a known probability of presence and customers’ demands are a set of non-stackable items. A stochastic modeling platform of 2L-VRPSC is established based on a Monte Carlo simulation and scenario analysis to minimize the expected total transportation cost. To achieve this, an enhanced adaptive tabu search (EATS) algorithm incorporating the multi-order bottom-fill-skyline (MOBFS) packing heuristic is proposed, where the EATS algorithm searches for the optimal routing combination and the MOBFS checks the feasibility of each route and guides the EATS to search for feasible solutions. The widely used two-dimensional loading-constrained vehicle routing problem (2L-VRP) benchmarks under different loading configurations considering items’ sequential and rotation constraints are applied for experiments, which demonstrates the comparable efficiency of the proposed EATS-MOBFS for solving 2L-VRP. Furthermore, the results and analysis of experiments based on the new 2L-VRPSC instances verify the versatility of the proposed solving approach, which is capable of providing more practical solutions to some real-life scenarios with customers’ uncertain information.

Details

Title
An Adaptive Tabu Search Algorithm for Solving the Two-Dimensional Loading Constrained Vehicle Routing Problem with Stochastic Customers
Author
Zhang, Zheng 1   VIAFID ORCID Logo  ; Ji, Bin 1 ; Yu, Samson S 2   VIAFID ORCID Logo 

 School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China 
 School of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia 
First page
1741
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767300252
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.