It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A group of new ternary Ti alloys bearing eutectoid and isomorphous beta stabilising elements was created to be manufactured through the conventional powder metallurgy route. The effect of the simultaneous addition of the same amount of Mn and Nb on the manufacturability, properties, and hardening behaviour was investigated. The ternary alloys are composed of the α-Ti and β-Ti phases and have a lamellar microstructure resulting from the slow cooling upon sintering. However, the size of the equiaxed α grains and of the α + β lamellae is monotonically reduced, especially the interlamellar spacing, as the amount of alloying elements increases. Due to their physical properties, Mn enhances and Nb hinders densification during sintering resulting in a decreasing trend of the relative density with the alloying elements content. Consequently, the resistance to plastic deformation increases (UTS, 514–726 MPa), the ductility decreases (elongation, 13.2–2.6%), and the fracture mode changes from intergranular to transgranular. The new ternary alloys share the same hardening mechanism, but the amount of deformation after necking is, generally, higher for lower amounts of Mn and Nb.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Engineering, The University of Waikato, Hamilton, New Zealand (GRID:grid.49481.30) (ISNI:0000 0004 0408 3579)
2 School of Engineering, The University of Waikato, Hamilton, New Zealand (GRID:grid.49481.30) (ISNI:0000 0004 0408 3579); International University of Science and Technology in Kuwait, College of Engineering, Ardiya, Kuwait (GRID:grid.49481.30)