It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present an overview of the diagnostics screens stations - named SSTs - of the ThomX compact Compton source. ThomX is a compact light source based on Compton backscattering. It features a linac and a storage ring in which the electrons have an energy of 50 MeV. Each SST is composed of three screens, a YAG:Ce screen and an Optical Transition Radiation (OTR) screen for transverse measurements and a calibration target for magnification and resolution characterisation. The optical system is based on commercial lenses that have been reverse-engineered. An Arduino is used to control both the aperture and the focus remotely, while the magnification must be modified using an external motor. We report on the overall performance of the station as measured during the first steps of beam commissioning and on the optical system remote operations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Université Paris-Saclay, CNRS/IN2P3, IJCLab , 91405, Orsay , France
2 Université Paris-Saclay, CNRS/IN2P3, IJCLab , 91405, Orsay , France; now at the University of Melbourne , Melbourne , Australia