It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Liquid biopsy (LB) provides a unique minimally invasive tool to follow-up cancer patients over time, to detect minimal residual disease (MRD), to study metastasis-biology and mechanisms of therapy-resistance. Molecular characterization of CTCs offers additionally the potential to understand resistance to therapy and implement individualized targeted treatments which can be modified during the disease evolution and follow-up period of a patient. In this study, we present a long-term follow-up of operable breast cancer patients based on a comprehensive liquid biopsy analysis. We performed a comprehensive liquid biopsy analysis in peripheral blood of 13 patients with early-stage operable breast cancer at several time points for a period of ten years, consisting of: (a) CTC enumeration using the CellSearch system, (b) phenotypic analysis of CTCs using Immunofluorescence, (c) gene expression analysis, in EpCAM(+) CTCs for CK-19, CD24,CD44, ALDH1, and TWIST1, (d) analysis of PIK3CA and ESR1 mutations in EpCAM(+) CTCs and corresponding plasma ctDNA and (e) DNA methylation of ESR1 in CTCs. 10/13 (77%) patients were found negative for LB markers in PB during the whole follow-up period, and these patients did not relapse during the follow-up. However, 3/13(18%) patients that were positive for at least one LB marker relapsed within the follow-up period. The molecular characteristics of CTCs were highly different even for the same patient at different time points, and always increased before the clinical relapse. Our results indicate that liquid biopsy can reveal the presence of MRD at least 4 years before the appearance of clinically detectable metastatic disease demonstrating that a comprehensive liquid biopsy analysis provides highly important information for the therapeutic management of breast cancer patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 National and Kapodistrian University of Athens, Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, Athens, Greece (GRID:grid.5216.0) (ISNI:0000 0001 2155 0800)
2 University of Patras, Division of Genetics, Cell and Developmental Biology, Department of Biology, Patras, Greece (GRID:grid.11047.33) (ISNI:0000 0004 0576 5395)
3 METROPOLITAN General Hospital, First Department of Medical Oncology, Athens, Greece (GRID:grid.414012.2) (ISNI:0000 0004 0622 6596)