Full Text

Turn on search term navigation

© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Being able to objectively characterise the intrinsic complexity of behavioural patterns resulting from human or animal decisions is fundamental for deconvolving cognition and designing autonomous artificial intelligence systems. Yet complexity is difficult in practice, particularly when strings are short. By numerically approximating algorithmic (Kolmogorov) complexity (K), we establish an objective tool to characterise behavioural complexity. Next, we approximate structural (Bennett’s Logical Depth) complexity (LD) to assess the amount of computation required for generating a behavioural string. We apply our toolbox to three landmark studies of animal behaviour of increasing sophistication and degree of environmental influence, including studies of foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition (e.g., predator-prey) strategies. We find that ants harness the environmental condition in their internal decision process, modulating their behavioural complexity accordingly. Our analysis of flight (fruit flies) invalidated the common hypothesis that animals navigating in an environment devoid of stimuli adopt a random strategy. Fruit flies exposed to a featureless environment deviated the most from Levy flight, suggesting an algorithmic bias in their attempt to devise a useful (navigation) strategy. Similarly, a logical depth analysis of rats revealed that the structural complexity of the rat always ends up matching the structural complexity of the competitor, with the rats’ behaviour simulating algorithmic randomness. Finally, we discuss how experiments on how humans perceive randomness suggest the existence of an algorithmic bias in our reasoning and decision processes, in line with our analysis of the animal experiments. This contrasts with the view of the mind as performing faulty computations when presented with randomised items. In summary, our formal toolbox objectively characterises external constraints on putative models of the “internal” decision process in humans and animals.

Details

Title
Approximations of algorithmic and structural complexity validate cognitive-behavioral experimental results
Author
Zenil, Hector; Marshall, James A R; Tegnér, Jesper
Section
ORIGINAL RESEARCH article
Publication year
2023
Publication date
Jan 24, 2023
Publisher
Frontiers Research Foundation
e-ISSN
16625188
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2768834093
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.