It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Achromatic devices present unique capabilities in efficient manipulation of waves and have wide applications in imaging and communication systems. However, the research of achromatic devices is limited by the narrow bandwidth, low efficiency as well as large configurations. In this paper, we propose a general strategy to design spin-locked achromatic metasurface with broadband and high efficiency properties in microwave region. A multi-resonant model is used to control the dispersion within a wide bandwidth by tuning its resonant intensity, resonance numbers as well as resonant frequency. As a proof of the concept, two achromatic meta-devices with ultra-thin profile at microwave frequency are experimentally investigated. The achromatic deflector can reflect the normal incident waves to the same angle within 9.5 to 11.5 GHz, while the other achromatic lens can focus the excitations at the same focal points. The experimentally working efficiency of the meta-devices fluctuates around 71–82% and 57–65% within the target working bandwidth, respectively. Moreover, our meta-devices can preserve the charity of the excitations. The scheme of this research shows great advances in the design of broadband and high-efficiency achromatic devices which can also be applied to other frequency ranges and inspires the realization of ultrabroadband and high-efficiency metadevices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Air and Missile Defense College, Air Force Engineering University, Xi’an, 710051, China
2 State Key Laboratory of Modern Optical Instrumentation, The Electromagnetics Academy Zhejiang University, Hangzhou, 310027, China
3 Air and Missile Defense College, Air Force Engineering University, Xi’an, 710051, China; State Key Laboratory of Modern Optical Instrumentation, The Electromagnetics Academy Zhejiang University, Hangzhou, 310027, China