It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Near-infrared organic light-emitting diodes (NIR OLEDs) with heavy metals are regularly reported due to the advantages of their various applications in healthcare services, veil authentication, and night vision displays. For commercial applications, it is necessary to look at radiance capacity (RC) instead of radiance because of power consumption. However, recent papers still reported only simple high radiance performance and do not look at device from the point of view of RC. To overcome this hurdle, we designed Ir(III)-based heteroleptic NIR materials with two types of auxiliary ligand. The proposed emitters achieve a highly oriented horizontal dipole ratio (Ir(mCPDTiq)2tmd, complex 1: 80%, Ir(mCPDTiq)2acac, complex 2: 81%) with a short radiative lifetime (1: 386 ns, 2: 323 ns). The device also shows an extremely low turn-on voltage (Von) of 2.2 V and a high RC of 720 mW/sr/m2/V. The results on the Von and RC of the device is demonstrated an outstanding performance among the Ir(III)-based NIR OLEDs with a similar emission peak.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, Republic of Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500)
2 Gyeongsang National University, Department of Chemistry and RNIS, Jinju, Republic of Korea (GRID:grid.256681.e) (ISNI:0000 0001 0661 1492)