Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Green hydrogen has become the key to social low-carbon transformation and is fully linked to zero carbon emissions. The carbon emissions trading market is a policy tool used to control carbon emissions using a market-oriented mechanism. Building a modular carbon trading center for the hydrogen energy industry would greatly promote the meeting of climate targets. Based on this, a “green hydrogen market—national carbon trading market–electricity market” coupling mechanism is designed. Then, the “green hydrogen market—national carbon trading market–electricity market” mechanism is modeled and simulated using system dynamics. The results are as follows: First, coupling between the green hydrogen market, carbon trading market and electricity market can be realized through green hydrogen certification and carbon quota trading. It is found that the coupling model is feasible through simulation. Second, simulation of the basic scenario finds that multiple-market coupling can stimulate an increase in carbon price, the control of thermal power generation and an increase in green hydrogen production. Finally, the proportion of the green hydrogen certification, the elimination mechanism of outdated units and the quota auction mechanism will help to form a carbon pricing mechanism. This study enriches the green hydrogen trading model and establishes a multiple-market linkage mechanism.

Details

Title
What Is the Policy Effect of Coupling the Green Hydrogen Market, National Carbon Trading Market and Electricity Market?
Author
Hao-Ran, Wang 1 ; Tian-Tian, Feng 2 ; Li, Yan 1 ; Hui-Min, Zhang 1 ; Jia-Jie Kong 1 

 School of Economics and Management, China University of Geosciences, Beijing 100083, China 
 School of Economics and Management, China University of Geosciences, Beijing 100083, China; Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing 100083, China; Key Laboratory of Strategic Studies, Ministry of Land and Resources, Beijing 100083, China 
First page
13948
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2769916338
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.