Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Solar energy is one of the most popular sources of renewable energy today. It is therefore essential to be able to predict solar power generation and adapt energy needs to these predictions. This paper uses the Transformer deep neural network model, in which the attention mechanism is typically applied in NLP or vision problems. Here, it is extended by combining features based on their spatiotemporal properties in solar irradiance prediction. The results were predicted for arbitrary long-time horizons since the prediction is always 1 day ahead, which can be included at the end along the timestep axis of the input data and the first timestep representing the oldest timestep removed. A maximum worst-case mean absolute percentage error of 3.45% for the one-day-ahead prediction was obtained, which gave better results than the directly competing methods.

Details

Title
Solar Irradiance Forecasting with Transformer Model
Author
Pospíchal, Jiří  VIAFID ORCID Logo  ; Kubovčík, Martin  VIAFID ORCID Logo  ; Luptáková, Iveta Dirgová
First page
8852
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771650942
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.