Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To address the problem caused by mixed pixels in MODIS images for high-resolution crop mapping, this paper presents a novel spatial–temporal deep learning-based approach for sub-pixel mapping (SPM) of different crop types within mixed pixels from MODIS images. High-resolution cropland data layer (CDL) data were used as ground references. The contributions of this paper are summarized as follows. First, we designed a novel spatial–temporal depth-wise residual network (ST-DRes) model that can simultaneously address both spatial and temporal data in MODIS images in efficient and effective manners for improving SPM accuracy. Second, we systematically compared different ST-DRes architecture variations with fine-tuned parameters for identifying and utilizing the best neural network architecture and hyperparameters. We also compared the proposed method with several classical SPM methods and state-of-the-art (SOTA) deep learning approaches. Third, we evaluated feature importance by comparing model performances with inputs of different satellite-derived metrics and different combinations of reflectance bands in MODIS. Last, we conducted spatial and temporal transfer experiments to evaluate model generalization abilities across different regions and years. Our experiments show that the ST-DRes outperforms the other classical SPM methods and SOTA backbone-based methods, particularly in fragmented categories, with the mean intersection over union (mIoU) of 0.8639 and overall accuracy (OA) of 0.8894 in Sherman County. Experiments in the datasets of transfer areas and transfer years also demonstrate better spatial–temporal generalization capabilities of the proposed method.

Details

Title
A Spatial–Temporal Depth-Wise Residual Network for Crop Sub-Pixel Mapping from MODIS Images
Author
Wang, Yuxian 1   VIAFID ORCID Logo  ; Yuan, Fang 2   VIAFID ORCID Logo  ; Zhong, Wenlong 1 ; Rongming Zhuo 3 ; Peng, Junhuan 1 ; Xu, Linlin 4 

 School of Land Science and Technology, China University of Geosciences, Beijing 100083, China 
 Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada 
 Aerospace Era Feihong Technology Co., Ltd., Beijing 100094, China 
 School of Land Science and Technology, China University of Geosciences, Beijing 100083, China; Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada 
First page
5605
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771655407
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.