Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-resolution crop type mapping is of importance for site-specific agricultural management and food security in smallholder farming regions, but is challenging due to limited data availability and the need for image-based algorithms. In this paper, we developed an efficient object- and pixel-based mapping algorithm to generate a 10 m resolution crop type map over large spatial domains by integrating time series optical images (Sentinel-2) and synthetic aperture radar (SAR) images (Sentinel-1) using the Google Earth Engine (GEE) platform. The results showed that the proposed method was reliable for crop type mapping in the study area with an overall accuracy (OA) of 93.22% and a kappa coefficient (KC) of 0.89. Through experiments, we also found that the monthly median values of the vertical transmit/vertical receive (VV) and vertical transmit/horizontal receive (VH) bands were insensitive to crop type mapping itself, but adding this information to supplement the optical images improved the classification accuracy, with an OA increase of 0.09–2.98%. Adding the slope of vegetation index change (VIslope) at the critical period to crop type classification was obviously better than that of relative change ratio of vegetation index (VIratio), both of which could make an OA improvement of 2.58%. These findings not only highlighted the potential of the VIslope and VIratio indices during the critical period for crop type mapping in small plots, but suggested that SAR images could be included to supplement optical images for crop type classification.

Details

Title
A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic Aperture Radar and Optical Images in the Google Earth Engine
Author
Guo, Linghui 1 ; Zhao, Sha 1 ; Gao, Jiangbo 2   VIAFID ORCID Logo  ; Zhang, Hebing 1 ; Zou, Youfeng 1 ; Xiao, Xiangming 3   VIAFID ORCID Logo 

 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China 
 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Rd., Beijing 100101, China 
 Department for Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA 
First page
5458
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771659835
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.