Full text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Mitochondria are the powerhouse of eukaryotic cells, which regulate cell metabolism and differentiation. Recently, mitochondrial transfer between cells has been shown to direct recipient cell fate. However, it is unclear whether mitochondria can translocate to stem cells and whether this transfer alters stem cell fate. Here, mesenchymal stem cell (MSC) regulation is examined by macrophages in the bone marrow environment. It is found that macrophages promote osteogenic differentiation of MSCs by delivering mitochondria to MSCs. However, under osteoporotic conditions, macrophages with altered phenotypes, and metabolic statuses release oxidatively damaged mitochondria. Increased mitochondrial transfer of M1-like macrophages to MSCs triggers a reactive oxygen species burst, which leads to metabolic remodeling. It is showed that abnormal metabolism in MSCs is caused by the abnormal succinate accumulation, which is a key factor in abnormal osteogenic differentiation. These results reveal that mitochondrial transfer from macrophages to MSCs allows metabolic crosstalk to regulate bone homeostasis. This mechanism identifies a potential target for the treatment of osteoporosis.

Details

Title
Mitochondrial Transfer Regulates Cell Fate Through Metabolic Remodeling in Osteoporosis
Author
Cai, Wenjin 1 ; Zhang, Jinglun 1 ; Yu, Yiqian 1 ; Ni, Yueqi 1 ; Yan, Wei 1 ; Cheng, Yihong 1 ; Han, Litian 1 ; Xiao, Leyi 1 ; Ma, Xiaoxin 1 ; Wei, Hongjiang 1 ; Ji, Yaoting 1 ; Zhang, Yufeng 1   VIAFID ORCID Logo 

 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China 
Section
Research Articles
Publication year
2023
Publication date
Feb 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771851546
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.