Abstract

Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element. The experiment is based on hyperbolic band theory that we confirm here in an unprecedented numerical survey of finite hyperbolic lattices. We implement hyperbolic graphene as an example of topologically nontrivial hyperbolic matter. Our work sets the stage to realize more complex forms of hyperbolic matter to challenge our established theories of physics in curved space, while the tunable complex-phase element developed here can be a key ingredient for future experimental simulation of various Hamiltonians with topological ground states.

Hyperbolic lattices emulate particle dynamics equivalent to those in negatively curved space, with connections to general relativity. Here, the authors use electric circuits with a novel complex-phase circuit element to simulate hyperbolic graphene with negligible boundary contributions.

Details

Title
Hyperbolic matter in electrical circuits with tunable complex phases
Author
Chen, Anffany 1   VIAFID ORCID Logo  ; Brand, Hauke 2   VIAFID ORCID Logo  ; Helbig, Tobias 3   VIAFID ORCID Logo  ; Hofmann, Tobias 3   VIAFID ORCID Logo  ; Imhof, Stefan 2 ; Fritzsche, Alexander 4 ; Kießling, Tobias 2 ; Stegmaier, Alexander 3 ; Upreti, Lavi K. 3   VIAFID ORCID Logo  ; Neupert, Titus 5   VIAFID ORCID Logo  ; Bzdušek, Tomáš 6   VIAFID ORCID Logo  ; Greiter, Martin 3   VIAFID ORCID Logo  ; Thomale, Ronny 3   VIAFID ORCID Logo  ; Boettcher, Igor 1   VIAFID ORCID Logo 

 University of Alberta, Department of Physics, Edmonton, Canada (GRID:grid.17089.37) (ISNI:0000 0001 2190 316X); University of Alberta, Theoretical Physics Institute, Edmonton, Canada (GRID:grid.17089.37) (ISNI:0000 0001 2190 316X) 
 Universität Würzburg, Physikalisches Institut, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658) 
 Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658) 
 Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658); Universität Rostock, Institut für Physik, Rostock, Germany (GRID:grid.10493.3f) (ISNI:0000000121858338) 
 University of Zurich, Department of Physics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650) 
 University of Zurich, Department of Physics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650); Paul Scherrer Institute, Condensed Matter Theory Group, Villigen PSI, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501) 
Pages
622
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2772533818
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.