It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, we investigate how an organism’s codon usage bias can serve as a predictor and classifier of various genomic and evolutionary traits across the domains of life. We perform secondary analysis of existing genetic datasets to build several AI/machine learning models. When trained on codon usage patterns of nearly 13,000 organisms, our models accurately predict the organelle of origin and taxonomic identity of nucleotide samples. We extend our analysis to identify the most influential codons for phylogenetic prediction with a custom feature ranking ensemble. Our results suggest that the genetic code can be utilized to train accurate classifiers of taxonomic and phylogenetic features. We then apply this classification framework to open reading frame (ORF) detection. Our statistical model assesses all possible ORFs in a nucleotide sample and rejects or deems them plausible based on the codon usage distribution. Our dataset and analyses are made publicly available on GitHub and the UCI ML Repository to facilitate open-source reproducibility and community engagement.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Delaware, Center for Bioinformatics and Computational Biology, Newark, USA (GRID:grid.33489.35) (ISNI:0000 0001 0454 4791)
2 Indiana University, Department of BioHealth Informatics, Center for Computational Biology and Bioinformatics, Indianapolis, USA (GRID:grid.257413.6) (ISNI:0000 0001 2287 3919)