Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Skin cancer develops due to the unusual growth of skin cells. Early detection is critical for the recognition of multiclass pigmented skin lesions (PSLs). At an early stage, the manual work by ophthalmologists takes time to recognize the PSLs. Therefore, several “computer-aided diagnosis (CAD)” systems are developed by using image processing, machine learning (ML), and deep learning (DL) techniques. Deep-CNN models outperformed traditional ML approaches in extracting complex features from PSLs. In this study, a special transfer learning (TL)-based CNN model is suggested for the diagnosis of seven classes of PSLs. A novel approach (Light-Dermo) is developed that is based on a lightweight CNN model and applies the channelwise attention (CA) mechanism with a focus on computational efficiency. The ShuffleNet architecture is chosen as the backbone, and squeeze-and-excitation (SE) blocks are incorporated as the technique to enhance the original ShuffleNet architecture. Initially, an accessible dataset with 14,000 images of PSLs from seven classes is used to validate the Light-Dermo model. To increase the size of the dataset and control its imbalance, we have applied data augmentation techniques to seven classes of PSLs. By applying this technique, we collected 28,000 images from the HAM10000, ISIS-2019, and ISIC-2020 datasets. The outcomes of the experiments show that the suggested approach outperforms compared techniques in many cases. The most accurately trained model has an accuracy of 99.14%, a specificity of 98.20%, a sensitivity of 97.45%, and an F1-score of 98.1%, with fewer parameters compared to state-of-the-art DL models. The experimental results show that Light-Dermo assists the dermatologist in the better diagnosis of PSLs. The Light-Dermo code is available to the public on GitHub so that researchers can use it and improve it.

Details

Title
Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions
Author
Abdul Rauf Baig  VIAFID ORCID Logo  ; Abbas, Qaisar  VIAFID ORCID Logo  ; Almakki, Riyad; Ibrahim, Mostafa E A  VIAFID ORCID Logo  ; AlSuwaidan, Lulwah  VIAFID ORCID Logo  ; Ahmed, Alaa E S
First page
385
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754418
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774846858
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.