Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this research, we modeled a silicon-based photodetector for the NIR-IR spectrum using a grating structure fabricated using the metal-assisted chemical etching method. A nanostructure fabricated by using this method is free of defects such as unwanted sidewall metal depositions. The device is simulated using Lumerical finite difference time domain (FDTD) for optical characteristics and Lumerical CHARGE for electrical characteristics. First, we optimized the grating structure duty cycle parameter for maximum optical power absorption using the particle swarm optimization algorithm provided in Lumerical FDTD, and then used the optimized parameter for our simulations. From Lumerical FDTD simulations, we found that the Cr masker metal used in the fabrication process acts as a resonant cavity and a potential candidate for internal photo emission (IPE) effects. By using Lumerical CHARGE, we performed electrical simulation and by adding the IPE calculation we found that at 850 nm wavelength the Si grating photodetector device exhibited 19 mA/W responsivity and detectivity of 2.62 × 106 Jones for −1 volt operating voltage.

Details

Title
Modeling and Simulation of Si Grating Photodetector Fabricated Using MACE Method for NIR Spectrum
Author
Surawijaya, Akhmadi  VIAFID ORCID Logo  ; Chandra, Zefanya; Muhammad Amin Sulthoni; Idris, Irman; Trio Adiono
First page
663
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774856599
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.