Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The outbreak of an epidemic disease may cause a large number of infections and a slightly higher death rate. In response to epidemic disease, both patient transfer and relief distribution are significant to reduce corresponding damage. This study proposes a two-stage multi-objective stochastic model (TMS-PTRD) considering pre-pandemic preparedness measures and post-pandemic relief operations. The proposed model considers the following four objectives: the total number of untreated infected patients, the total transfer time, the overall cost, and the equity distribution of relief supplies. Before an outbreak, the locations of temporary relief distribution centers (TRDCs) and the inventory levels of established TRDCs should be determined. After an outbreak, the locations of temporary hospitals (THs), the locations of designated hospitals (DHs), the transfer plans for patients, and the relief distribution should be determined. To solve the TMS-PTRD model, we address an improved preference-inspired co-evolutionary algorithm named the PICEA-g-AKNN algorithm, which is embedded with a novel similarity distance and three different tailored evolutionary strategies. A real-world case study of Hunan of China and 18 test instances are randomly generated to evaluate the TMS-PTRD model. The finding shows that the PICEA-g-AKNN algorithm is better than some most widely used multi-objective algorithms.

Details

Title
Two-Stage Multi-Objective Stochastic Model on Patient Transfer and Relief Distribution in Lockdown Area of COVID-19
Author
Long, Shengjie 1   VIAFID ORCID Logo  ; Zhang, Dezhi 1 ; Li, Shuangyan 2 ; Li, Shuanglin 1 

 School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China 
 College of Logistics and Transportation, Central South University of Forestry and Technology, Changsha 410004, China 
First page
1765
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774893159
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.