Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Increasing attention has been paid to the safety and efficiency of batteries due to the rapid development and widespread use of electric vehicles. Solid-state batteries have the advantages of good safety, high energy density, and strong cycle performance, and are recognized as the next generation of power batteries. However, solid-state batteries generate large stress changes due to the volume change of electrode materials during cycling, resulting in pulverization and exfoliation of active materials, fracture of solid-electrolyte interface films, and development of internal cracks in solid electrolytes. As a consequence, the cycle performance of the battery is degraded, or even a short circuit can occur. Therefore, it is important to study the stress changes of solid-state batteries or electrode materials during cycling. This review presents a current overview of chemo-mechanical characterization techniques applied to solid-state batteries and experimental setups. Moreover, some methods to improve the mechanical properties by changing the composition or structure of the electrode materials are also summarized. This review aims to highlight the impact of the stress generated inside solid-state batteries and summarizes a part of the research methods used to study the stress of solid-state batteries, which help improve the design level of solid-state batteries, thereby improving battery performance and safety.

Details

Title
Experimental Investigations on the Chemo-Mechanical Coupling in Solid-State Batteries and Electrode Materials
Author
Wang, Jiaxuan 1 ; Feng, Hao 1 

 Shenzhen Research Institute of Shandong University, Shenzhen 515100, China; Department of Engineering Mechanics, Shandong University, Jinan 250100, China 
First page
1180
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774899348
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.