Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We previously demonstrated that the Alzheimer’s disease (AD)-like model mice, Tg2576, housed at a high ambient temperature of 30 °C for 13 months, exhibited increased body temperature, which increased amyloid-β (Aβ) levels and tau stability, leading to tau phosphorylation and ultimately inducing memory impairment. Here, we aimed to exclude the possible effect of environmental factors associated with the difference in ambient temperature (23 °C vs. 30 °C) and to further clarify the effects of elevated body temperature on AD-like pathologies. We generated uncoupling protein 1 (UCP1) deletion in Tg2576 mice, Tg2576/UCP1−/−, because UCP1 deletion mice show a sustained rise in body temperature at normal room temperature. As expected, the body temperature in Tg2576/UCP1−/− mice was higher than that in Tg2576/ UCP1+/+ mice at 23 °C, which was accompanied by upregulated Aβ levels due to increased β-secretase (BACE1) and decreased neprilysin (NEP) protein levels in the brains of Tg2576/UCP1−/− mice compared with those in the Tg2576/ UCP1+/+ mice. Elevated body temperature also increased total tau levels, leading to enhanced phosphorylation, heat shock protein induction, and activated tau kinases. Furthermore, elevated body temperature enhanced glial activation and decreased synaptic protein levels in the brain. Taken together, these findings demonstrate that elevated body temperatures exacerbate AD-like pathologies.

Details

Title
Deletion of UCP1 in Tg2576 Mice Increases Body Temperature and Exacerbates Alzheimer’s Disease-Related Pathologies
Author
Cha-Gyun Jung 1   VIAFID ORCID Logo  ; Yamashita, Hitoshi 2 ; Kato, Reiko 3 ; Zhou, Chunyu 1 ; Matsushita, Hiroaki 2 ; Takeuchi, Tamaki 2 ; Abdelhamid, Mona 1   VIAFID ORCID Logo  ; Chen, Yuxin 1 ; Michikawa, Makoto 1 

 Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan 
 Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan 
 Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan 
First page
2741
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774916425
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.