Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, optimization-based energy disaggregation (ED) algorithms have been gaining significance due to their capability to perform disaggregation with minimal information compared to the pattern-based ED algorithms, which demand large amounts of data for training. However, the performances of optimization-based ED algorithms depend on the problem formulation that includes an objective function(s) and/or constraints. In the literature, ED has been formulated as a constrained single-objective problem or an unconstrained multi-objective problem considering disaggregation error, sparsity of state switching, on/off switching, etc. In this work, the ED problem is formulated as a constrained multi-objective problem (CMOP), where the constraints related to the operational characteristics of the devices are included. In addition, the formulated CMOP is solved using a constrained multi-objective evolutionary algorithm (CMOEA). The performance of the proposed formulation is compared with those of three high-performing ED formulations in the literature based on the appliance-level and overall indicators. The results show that the proposed formulation improves both appliance-level and overall ED results.

Details

Title
Optimization-Based Energy Disaggregation: A Constrained Multi-Objective Approach
Author
Park, Jeewon; Ajani, Oladayo S  VIAFID ORCID Logo  ; Mallipeddi, Rammohan  VIAFID ORCID Logo 
First page
563
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774930411
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.